
Teaching RooFit

Jonas Rembser (CERN, EP-SFT) for the ROOT team

12 May 2022, ROOT train the trainers

Introduction

○ RooFit: C++ library for statistical data analysis in ROOT

○ It has many components itself:
○ core RooFit libraries, RooStats, and HistFactory

○ Different users interact with it in different ways

○ Topic of today: what to consider when teaching RooFit?
○ Introduction to RooFit with motivation
○ The RooFit ecosystem
○ What parts to teach?
○ Teaching how to debug
○ RooFit documentation

2

Why RooFit?

○ ROOT function framework can handle complicated functions...
○ ...but requires writing much code

○ Normalization of pdfs not always trivial
○ RooFit does it automatically

○ In complex fit, computation performance is important
○ need to optimize code for acceptable performance
○ built-in optimization available in RooFit

○ evaluation only when needed
○ Simultaneous fit to different data samples
○ Provides full model description for reusability

3

The RooFit ecosystem

It’s important to show how the RooFit ecosystem looks like

○ RooFit:
○ model building and fitting to data

○ RooStats:
○ widely-used statistical procedure

○ HistFactory:
○ specify complex binned RooFit models

Users from experiments often don’t interact
much with the RooFit interfaces directly:

○ Many fitting frameworks built on RooFit

ROOT Core, Math, etc.

RooFit

RooStats

ROOT

User/experiment fitting frameworks

HistFactory

4

What to teach?

The functionality of the core RooFit libraries is wide:

1. Model building
2. Handling of binned and unbinned data
3. Toy dataset generation
4. Test statistic building and minimization
5. Data and model visualization
6. The RooWorkspace for storing data and models

○ Most users use this core functionality and not RooStats/HistFactory
○ It’s better to teach basic RooFit and mention RooStats/HistFactory in passing

(depending on the audience)
○ Most new RooFit users use Python nowadays, so it’s probably better to teach in Python

5

RooFit programming model
Mathematical concepts are represented by C++ objects

6

Mathematical concept RooFit class

Variable RooRealVar

Function RooAbsReal

Pdf RooAbsPdf

Space point RooArgSet

Integral RooRealIntegral

List of space points RooAbsData

More RooFit building blocks: PDFs

○ RooFit provides a collection of standard PDF classes, e.g.:

○ Easy to extend the library: each pdf is a separate C++ class

7

More RooFit building blocks
Besides PDFs, RooFit implements many useful operations for model building:

8

Operation RooFit class

Addition RooAddPdf / RooAddition for functions

Product RooProdPdf / RooProduct for functions

Convolution RooFFTConvPdf

PDF or function from histogram RooHistPdf / RooHistFunc

Kernel estimation RooKeysPdf

Morphing PDFs for sys. variations RooMomentMorph / RooMomentMorphFunc

RooFit data handling

○ Unbinned data can also be imported from ROOT TTrees

data = ROOT.RooDataSet(“data”, ”data”, x, Import=myTree)

○ Imports TTree branch named “x”, all data is converted to double internally
○ Specify a RooArgSet to import multiple observables

○ Import from a text file of variables (separated by white spaces)

data = ROOT.RooDataSet.read(“data.txt”, [x,y])

○ Binned data can be imported from ROOT histograms

data = ROOT.RooDataHist(“data”, ”data”, x, Import=myTH1)

○ Imports values, binning definition and bin errors (if defined)
○ Specify a RooArgList of observables when importing a TH2/3.

○ Data can be imported/exported from/to NumPy and Pandas (see this tutorial)
○ Data can be imported from RDataFrame (see this tutorial)

9

https://root.cern/doc/master/rf409__NumPyPandasToRooFit_8py.html
https://root.cern/doc/master/rf408__RDataFrameToRooFit_8py.html

Toy generation, fitting and visualization
○ Typical workflow

○ a pdf with a signal and a background
component

○ expected number of events considered in
the likelihood (extended fit)

○ model building, toy generation, fitting, and
plotting

○ even though dataset is binned for plot, the
fit is unbinned

10

Observable and parameters
x = ROOT.RooRealVar("x","x", 0.0, 0.0, 10.0)
sigmean = ROOT.RooRealVar("sigmean", "sigmean", 5.0, 0.0, 10.0)
sigwidth = ROOT.RooRealVar("sigwidth", "sigwidth", 1.0, 0.01, 10.)
bkgc = ROOT.RooRealVar("bkgc","bkgc", -0.3, -10.0, 0.1)

Build a Gaussian pdf and exponential background pdf:
signal = ROOT.RooGaussian("signal","signal",x,sigmean,sigwidth)
background = ROOT.RooExponential("background","background", x, bkgc)

Construct the added pdf with expected nr. of events for extended fit:
nsig = ROOT.RooRealVar("nsig", "nsig", 200, 0., 10000)
nbkg = ROOT.RooRealVar("nbkg", "nbkg", 600, 0., 10000)
model = ROOT.RooAddPdf("model","model", [signal, background],
 [nsig, nbkg])

Generate a toy MC sample from composite PDF:
data = model.generate(x, 2000)

Perform extended ML fit of composite PDF to toy data:
model.fitTo(data)

Plot toy data and composite PDF overlaid:
xframe = x.frame()
data.plotOn(xframe)
model.plotOn(xframe)
model.plotOn(xframe, Components=background, LineStyle=”--”)
xframe.Draw()

The RooWorkspace
○ RooWorkspace: container of all RooFit objects

○ full model with pdfs, functions and variables
○ (multiple) data sets

○ possible to save entire model in a ROOT file
○ all information is available for further analysis
○ possible to join workspaces for combined fits

○ common format for sharing physics results
○ The RooWorkspace also enables the factory syntax

the build models, for example for Gaussian pdf:
ws.factory("Gaussian::gauss(x[0.,0.,10.],mean[5.,0.,10.],width[1.,0.01.,10.])");

○ More details on the factory syntax can be found
for example in this presentation or in the RooFit
tutorials

11

Importing and saving the model and data
from the previous example:
RooWorkspace ws("ws", "ws");
ws.import(model);
ws.import(*data);
ws.writeToFile("myWorkspace.root");

Tree printing mode (ws.Print("t")) of
workspace reveals model structure:
variables

(bkgc,nbkg,nsig,sigmean,sigwidth,x)

p.d.f.s

RooAddPdf::model[nsig * signal + nbkg * background] = 0.750001
 RooGaussian::signal[x=x mean=sigmean sigma=sigwidth] =
3.72665e-06
 RooExponential::background[x=x c=bkgc] = 1

datasets

RooDataSet::modelData(x)

https://indico.desy.de/event/11244/contributions/4930/attachments/3446/3946/RooStats_Training_Part1.pdf

C++/Python or factory language?

○ RooFit models can be built either:
○ directly from RooAbsArg objects in C++/Python:

○ more concise and benefits from type system of programming language
○ inside a RooWorkspace with the RooFit factory language

○ more expressive, but everything happens inside strings
○ When teaching RooFit, try to not mix both ways too much

12

building Gaussian PDF from objects:

x = ROOT.RooRealVar("x", "x", 5.20, 5.30)
mean = ROOT.RooRealVar("mean", "mean", 5.28, 5.20, 5.30
sigma = ROOT.RooRealVar("sigma", "sigma", 0.0027, 0.001, 1.)
gauss = ROOT.RooGaussian("gauss", "gauss", x, mean, sigma)

building Gaussian PDF with factory language:

ws = ROOT.RooWorkspace("ws", true)
ws.factory("Gaussian::gauss(x[5.20,5.30], mean[5.28,5.2,5.3], sigma[0.0027,0.001,1])")

RooFit pythonizations

13

● PyROOT bindings more pythonic in 6.26
● Now you can for example:

○ use Python keyword arguments instead
of RooFit command arguments

○ pass around Python sets or lists instead of
RooArgSet or RooArgList

○ pass Python dictionaries to functions that
take std::map<>

○ implicitly convert floats to RooConstVar in
RooArgList/Set constructors

● All pythonizations are documented
● Some Pythonizations to help with C++/Python

lifetime issue
○ Still there are memory leaks when returning

owning pointers
● See also this ROOT meeting presentation

Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:
Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:

Create background pdf poly(x)*poly(y)*poly(z)
px = ROOT.RooPolynomial("px", "px", x, [-0.1, 0.004])
py = ROOT.RooPolynomial("py", "py", y, [0.1, -0.004])
pz = ROOT.RooPolynomial("pz", "pz", z)
bkg = ROOT.RooProdPdf("bkg", "bkg", [px, py, pz])

Create composite pdf sig+bkg
fsig = ROOT.RooRealVar("fsig", "signal fraction",
 0.1, 0., 1.)
model = ROOT.RooAddPdf("model", "model",
 [sig, bkg], [fsig])

data = model.generate((x, y, z), 20000)

Make plain projection of data and pdf on x observable
frame = x.frame(Title="Projection on X", Bins=40)
data.plotOn(frame)

https://root.cern/doc/master/group__RoofitPythonizations.html
https://indico.cern.ch/event/1061658/
https://root.cern/doc/master/rf316__llratioplot_8py.html
https://root.cern/doc/master/rf316__llratioplot_8py.html

RooFit with NumPy, Pandas, and RDF

14

● ROOT v6.26 new converters between
NumPy arrays/Pandas dataframes and
RooDataSet/RooDataHist

○ No translation from RooDataHist to
dataframe because histograms are in
general multi-dimensional

○ Tutorial in Python

● New RooRealVar.bins() function to get RooFit
bin boundaries as NumPy array

● Creating RooFit datasets from RDataFrame
○ Works for both RooDataSet and

RooDataHist
○ Weighted filling still needs to be

implemented
○ Tutorial in C++ and Python

from ROOT import RooRealVar, RooCategory, RooGaussian

x = RooRealVar("x", "x", 0, 10)
cat = RooCategory("cat", "cat",
 {"minus": -1, "plus": +1})

mean = RooRealVar("mean", "mean",
 5, 0, 10)
sigma = RooRealVar("sigma", "sigma",
 2, 0.1, 10)

gauss = RooGaussian("gauss", "gauss",
 x, mean, sigma)

data = gauss.generate((x, cat), 100)

df = data.to_pandas()

Example of exporting RooDataSet to Pandas:

https://root.cern.ch/doc/master/rf409__NumPyPandasToRooFit_8py.html
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.C
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.py

Teaching how to debug

It’s important to teach how to debug models and fits.

○ Remind to always read logs (especially errors and warnings)
○ Explain the message logger (like in this tutorial)
○ Options to get more minimization output (PrintLevel() in RooAbsPdf.fitTo())

○ Finding fit convergence problems is a whole lecture in itself
○ Two important methods to print model structure:

○ model.Print(“t”) # “t” for “tree”, also “v” for “verbose” is useful
○ workspace.Print() # to get all the content in a RooWorkspace

15

 RooAddPdf::sum[g1frac * g1 + g2frac * g2 + [%] * argus] = 0.0687785
 RooGaussian::g1[x=x mean=mean1 sigma=sigma] = 0.135335
 RooGaussian::g2[x=x mean=mean2 sigma=sigma] = 0.011109
 RooArgusBG::argus[m=x m0=k c=9 p=0.5] = 0

Example of the “pdf” section in a RooWorkspace printout

https://root.cern.ch/doc/master/rf506__msgservice_8py.html

RooFit Model Visualization
○ Model visualization can be also useful for debugging

○ GraphViz visualization of RooFit models:
○ model.graphVixxTree(“model.dot”)

○ The dot file can be converted to .png file:
dot -Tgif -o model.gif model.dot # Directed graph

fdp –Tgif –o model_fdp.gif model.dot # Spring balanced model

16

The unified theory of documentation

graphics from https://documentation.divio.com/

17

https://documentation.divio.com/

RooFit documentation

○ How-to guides (problem-oriented):
○ ROOT tutorials: RooFit (C++ and Python), RooStats (C++), HistFactory (C++)

○ Tutorials (learning-oriented):
○ The RooFit manual on the ROOT website
○ RooFit tutorial from the CMS data analysis school

○ Explanation (understanding-oriented):
○ The RooFit quick start guide
○ RooStats users’ guide

○ Reference (information-oriented):
○ The RooFit sections in the ROOT reference guide (doxygen)
○ The RooFit users’ manual
○ HistFactory manual
○ “Practical statistics for the LHC” (as reference for methods implemented in RooStats)

18

https://root.cern.ch/doc/master/group__tutorial__roofit.html
https://root.cern.ch/doc/master/group__tutorial__roostats.html
https://root.cern.ch/doc/master/group__tutorial__histfactory.html
https://root.cern/manual/roofit/
https://cmsdas.github.io/statistics-short-exercise/#roofit
https://root.cern/download/doc/roofit_quickstart_3.00.pdf
https://twiki.cern.ch/twiki/pub/RooStats/WebHome/RooStats_UsersGuide.pdf
https://root.cern/doc/master/group__Roofitmain.html
https://root.cern/download/doc/RooFit_Users_Manual_2.91-33.pdf
https://cdsweb.cern.ch/record/1456844
https://cds.cern.ch/record/2004587/

Summary

○ RooFit is a component of ROOT with sub components (like RooStats and HistFactory)

○ RooStats and HistFactory are less used than the core RooFit libraries
○ Training should focus on model building, data handling, fitting and visualization

○ The new pythonizations can make RooFit more accessible in Python
○ Students can use RooFit with things they are familiar with (e.g. NumPy arrays)

○ Important to teach how to debug your model and fits

○ There is plenty of documentation available, especially how-to guides and references

○ Don’t forget to mention the RooFit/RooStats topic on the ROOT forum as the best
address to get help!

https://root-forum.cern.ch/c/roofit-and-roostats/12

